The Reversible Increase in Tight Junction Permeability Induced by Capsaicin Is Mediated via Cofilin-Actin Cytoskeletal Dynamics and Decreased Level of Occludin

نویسندگان

  • Tomoko Shiobara
  • Takeo Usui
  • Junkyu Han
  • Hiroko Isoda
  • Yoko Nagumo
چکیده

Previous results demonstrated that capsaicin induces the reversible tight junctions (TJ) opening via cofilin activation. The present study investigated the mechanisms underlying the reversible TJ opening and compared the effect to the irreversible opening induced by actin inhibitors. Capsaicin treatment induced the F-actin alteration unique to capsaicin compared to actin-interacting agents such as latrunculin A, which opens TJ irreversibly. Along with TJ opening, capsaicin decreased the level of F-actin at bicellular junctions but increased it at tricellular junctions accompanied with its concentration on the apical side of the lateral membrane. No change in TJ protein localization was observed upon exposure to capsaicin, but the amount of occludin was decreased significantly. In addition, cosedimentation analyses suggested a decrease in the interactions forming TJ, thereby weakening TJ tightness. Introduction of cofilin, LIMK and occludin into the cell monolayers confirmed their contribution to the transepithelial electrical resistance decrease. Finally, exposure of monolayers to capsaicin augmented the paracellular passage of both charged and uncharged compounds, as well as of insulin, indicating that capsaicin can be employed to modulate epithelial permeability. Our results demonstrate that capsaicin induces TJ opening through a unique mechanism, and suggest that it is a new type of paracellular permeability enhancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Occludin is required for TRPV1-modulated paracellular permeability in the submandibular gland.

Occludin plays an important role in maintaining tight junction barrier function in many types of epithelia. We previously reported that activation of transient receptor potential vanilloid subtype 1 (TRPV1) in rabbit submandibular gland promoted salivary secretion, partly by an increase in paracellular permeability. We have now explored the role of occludin in TRPV1-modulated paracellular perme...

متن کامل

Glycerol disrupts tight junction-associated actin microfilaments, occludin, and microtubules in Sertoli cells.

Intratesticular injections of glycerol have been shown to result in a marked and prolonged reduction of spermatogenesis, accompanied by increased permeability of the blood-testis barrier. Because the permeability of the blood-testis barrier is regulated by Sertoli cell tight junctions, and tight junction organization is regulated by the cytoskeleton, we undertook to examine the effects of glyce...

متن کامل

The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...

متن کامل

Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells.

The function of occludin (Occ) in the tight junction is undefined. To gain insight into its role in epithelial cell biology, occludin levels in Madin-Darby canine kidney II cells were suppressed by stably expressing short interfering RNA. Suppression of occludin was associated with a decrease in claudins-1 and -7 and an increase in claudins-3 and -4. Claudin-2 levels were unaffected. The tight ...

متن کامل

Role of stretch on tight junction structure in alveolar epithelial cells.

Previous studies have demonstrated that high tidal volumes can cause interstitial and alveolar edema, with degradation of pulmonary epithelial barrier integrity. Separate studies have shown that F-actin disruption and decreased intracellular ATP (ATP(i)) levels in the nonpulmonary epithelium can increase tight junction (TJ) permeability. We hypothesized that large epithelial stretch perturbs AT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013